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WP-FSCIL: A Well-Prepared Few-shot
Class-incremental Learning Framework for Pill

Recognition
Jinghua Zhang, Chen Li, Marco Cristani, Hongzan Sun, Marcin Grzegorzek, and Huiling Chen

Abstract— Few-shot Class-incremental Pill Recognition
(FSCIPR) aims to develop an automatic pill recognition
system that requires only a few training data and can
continuously adapt to new classes, providing technical
support for applications in hospitals, portable apps, and
assistance for visually impaired individuals. This task faces
three core challenges: overfitting, fine-grained classifica-
tion problems, and catastrophic forgetting. We propose the
Well-Prepared Few-shot Class-incremental Learning (WP-
FSCIL) framework, which addresses overfitting through a
parameter-freezing strategy, enhances the robustness and
discriminative power of backbone features with Center-
Triplet (CT) loss and supervised contrastive loss for fine-
grained classification, and alleviates catastrophic forget-
ting using a multi-dimensional Knowledge Distillation (KD)
strategy based on flexible Pseudo-feature Synthesis (PFS).
By flexibly synthesizing any number of old-class features,
the PFS strategy resolves the issue of insufficient samples
in the KD process, enabling Response-based KD (KD1)
and Relation-based KD (KD2) to comprehensively preserve
old knowledge. The effectiveness of WP-FSCIL has been
validated through experiments conducted on two pub-
licly available pill datasets. These experiments show that
WP-FSCIL outperforms existing state-of-the-art methods,
demonstrating its superior performance.

Index Terms— Pill recognition, Class-incremental learn-
ing, Few-shot learning, Metric learning, Knowledge distilla-
tion

I. INTRODUCTION

The “Medication Without Har” initiative by the World
Health Organization emphasizes that unsafe and incorrect
medication practices are a major source of preventable harm in
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Fig. 1: An example of FSCIPR under the hospital scenario. In
the hospital, as time progresses, the range of pill classes requir-
ing identification may expand due to changes in suppliers or
the invention of new pills. Whenever new pills are introduced,
automatic pill recognition systems should effectively learn
to identify these new classes using limited samples while
retaining the ability to recognize previously known pills.

healthcare systems worldwide, resulting in an estimated annual
cost of $42 billion [1]. Medication errors can occur at any
stage, such as prescribing or dispensing, and are often influ-
enced by factors like fatigue, which can lead to severe harm
or even death. To address these challenges, the World Health
Organization’s initiative aims to reduce medication errors and
enhance patient safety. With the progresses made by machine
learning in many fields [2]–[11], automatic pill recognition
technology has emerged as a promising solution [12]–[16],
which primarily involves using computer vision and machine
learning techniques to accurately identify pills based on their
visual characteristics, thereby reducing medication errors and
preventing potential adverse pill events.

The automatic pill recognition system holds significant and
wide-ranging value across healthcare, home medication, and
pharmaceutical management [17]–[19]. In healthcare insti-
tutions, this system provides pharmacists and nursing staff
with an additional verification layer to ensure the accuracy of
medication type and dosage, significantly reducing medication
errors and enhancing patient safety. This is particularly crucial
in scenarios involving multi-pill dispensing in hospital wards.
For chronic patients, the elderly, and those with visual impair-
ments, pill recognition technology offers reliable medication
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verification in home settings, helping to prevent confusion
or repeated medication, thereby supporting safe adherence
to medical instructions. Automatic pill recognition facilitates
automated inventory control within pharmaceutical companies,
warehouses, and pharmacies in pharmaceutical management.
This ensures the accuracy of pill types, quantities, and batch
information, stabilizing the pill supply chain. Furthermore,
recent advancements in mobile applications incorporate pill
recognition features that leverage camera-based image recog-
nition to provide real-time medication information, offer-
ing convenient, self-service medication support for users in
their daily lives. These application scenarios underscore the
profound significance of automatic pill recognition systems
in reducing medication errors, enhancing patient safety, and
improving the efficiency of healthcare system management.

Currently, research in the automatic pill recognition field is
relatively limited, with most focusing on traditional machine
learning and computer vision methods. For example, Kim
et al. [15] proposed a Multi Combination Pattern Labeling
method that improves pill classification accuracy and relia-
bility through feature point extraction and edge recognition.
Wang et al. [14] introduced the MCIR-YOLO system, which
enhances the YOLOv5s model through multimodal fusion
techniques to address the challenge of distinguishing white
pills. Heo et al. [16] developed a deep learning-based auto-
matic pill recognition system that combines image classifica-
tion, text detection, and a language model for label correction,
significantly improving recognition accuracy.

Despite the growing body of research, most of these systems
are static, making it difficult to adapt to new pills and con-
stantly changing classes. Additionally, minimizing the reliance
on labeled samples is essential, given the high cost of data
annotation and the requirement for specialized expertise. To
address these issues, Ling et al. [20] developed the few-
shot pill recognition method, and Nguyen et al. [21] were
the first to consider a continual learning scenario for pill
recognition. However, in practice, the addition of new pills is
often accompanied by a lack of labeled samples. For example,
in hospital scenarios, as illustrated in Fig. 1, the range of pill
classes requiring identification may expand over time due to
changes in suppliers or the invention of new pills. Whenever
new pills are introduced, automatic pill recognition systems
must effectively learn to identify these new classes using few-
shot samples while retaining the ability to recognize previously
known pills. Similarly, on mobile devices, personal users may
need to customize new pills, creating a demand for automatic
pill recognition systems that handle both few-shot and class-
incremental challenges. These scenarios underscore the urgent
need for automatic pill recognition systems that can address
these dual challenges effectively, though research in this area
remains in its early stages.

To address the Few-shot Class-incremental Learning (FS-
CIL) challenges in pill recognition, we propose a novel
framework, Well-Prepared Few-shot Class-incremental Learn-
ing (WP-FSCIL), which tackles key issues in Few-shot Class-
incremental Pill Recognition (FSCIPR). These challenges in-
clude overfitting, where limited training samples during in-
cremental learning lead to poor generalization; catastrophic

forgetting, where new class introduction can result in the loss
of knowledge for old classes; and the fine-grained challenge,
where similarities in pill color and shape, as well as varying
angles and lighting, increase both inter- and intra-class confu-
sion, complicating model performance.

To overcome these challenges, we introduce WP-FSCIL, a
framework designed with one training strategy and two core
designs. Following the training strategy used in most FSCIL
methods, we freeze most of the backbone parameters after the
base session training to mitigate the overfitting problem. This
first core design: in the base session training, we leverage
Center-Triplet (CT) loss to enhance the model’s ability to
distinguish fine-grained features effectively. To enhance the
backbone’s ability to generalize to future incremental classes,
we incorporate supervised contrastive loss during the base
session. Additionally, we design a set of pseudo-classes based
on pill visual characteristics to simulate potential future sce-
narios, thereby augmenting the model’s forward compatibility.
This second core design: during the subsequent incremental
sessions, the focus shifts to retaining previously acquired
knowledge while learning new classes, thus mitigating catas-
trophic forgetting. To this end, we propose a novel multi-
dimensional Knowledge Distillation (KD) strategy grounded in
flexible Pseudo-feature Synthesis (PFS). This strategy enables
the flexible synthesis of an arbitrary number of pseudo-old
class features, combined with real incremental data features,
to facilitate the KD process. By generating sufficient pseudo-
features, this approach addresses the limitations of few-shot
scenarios. During distillation, we employ Response-based KD
(KD1) and Relation-based KD (KD2) [22] to comprehensively
retain knowledge of previously learned classes. This helps the
model handle new and old classes effectively while preserving
strong recognition performance.

To evaluate the effectiveness of WP-FSCIL, we performed
experiments on the FCPill and mCURE datasets. The results
show that our framework surpasses existing advanced methods,
achieving outstanding performance across various evaluation
metrics. To highlight the contributions of our approach, we
summarize the key points below:

• Proposed a well prepared FSCIPR framework: We
designed the WP-FSCIL framework for pill recognition,
systematically addressing overfitting, fine-grained issues,
and catastrophic forgetting with targeted strategies in both
base and incremental sessions.

• Introduced a comprehensive base session training
strategy: In the base session, we introduced CT loss for
fine-grained discriminability, supervised contrastive loss
for generalization, and combined virtual and real classes
to enhance forward compatibility for future incremental
classes.

• Proposed a multi-dimensional knowledge distillation
strategy for incremental learning: In incremental ses-
sions, we developed a multi-dimensional KD strategy
with PFS to transfer classification and feature relation-
ships, preserving previous knowledge.

• Superior experimental performance: Experiments on
two public datasets show that WP-FSCIL outperforms
existing methods, demonstrating its effectiveness in ad-
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dressing FSCIPR challenges.
The structure of this paper is as follows: Section II covers

the foundational knowledge and related studies; Section III
provides an in-depth description of our proposed methods;
Section IV presents the experimental setup and performance
analysis; and Section V offers the conclusion.

II. RELATED WORK

A. Automatic Pill Recognition

Currently, research on pill recognition predominantly fo-
cuses on two tasks: pill classification [15], [16], [20], [21],
[23], [24] and pill detection [14], [18], [19], [25], [26]. Our
paper focuses on classification tasks. Existing approaches can
be categorized into traditional image processing techniques
and deep learning methods. Traditional techniques often rely
on expert-designed feature extraction frameworks rooted in
domain knowledge, subsequently paired with machine learn-
ing algorithms for pill classification. For example, the early
pill recognition system proposed by Lee et al. [23] relied
heavily on feature engineering, showcasing the importance of
attributes such as shape, color, size, and imprint in achieving
effective pill recognition. With the rise of deep learning,
models can independently learn complex features from images,
removing the need for manual feature extraction. Many recent
studies have used deep learning for pill recognition. For
instance, Zeng et al. [24] proposed the MobileDeepPill system
for automatic pill recognition via smartphones in complex
environments. This system improves recognition robustness,
captures pill features, and reduces model size through a triplet
loss function, a multi-CNN model, and a KD framework.

Deep learning-based methods are more flexible and perform
better than traditional methods but require large amounts of
data and struggle to adapt to changing environments. To
address these challenges, Ling et al. [20] developed a few-shot
classification framework, and Nguyen et al. [21] proposed an
incremental multi-stream fusion framework. However, incre-
mental scenarios in pill recognition often come with limited
samples, introducing the FSCIL challenge, which remains
in its early research stages, with only our early work [13]
addressing this area.

B. Few-shot Learning

Few-shot learning has emerged as a crucial area of research
to overcome the limitations posed by insufficient training
samples, as conventional deep learning models typically rely
on extensive labeled datasets to achieve robust generaliza-
tion [27]; however, acquiring sufficient labeled samples is
time-consuming and costly in many real-world applications,
such as pill recognition. Few-shot learning aims to effectively
learn new classes from limited training samples, achieving
satisfactory classification performance [28]–[31]. Current few-
shot learning methods primarily include meta-learning, metric
learning, and data augmentation approaches. Meta-learning
approaches focus on helping models adapt rapidly to new
tasks. For example, Prototype Bayesian Meta-Learning [32]
constructs task-specific initialization in a Bayesian framework,

combining variational inference and prototype-conditioned pri-
ors to enable rapid adaptation and improved generalization on
new tasks. Metric learning methods address few-shot classifi-
cation by defining similarity metrics in the feature space. For
instance, Zhou et al. [33] proposed an automatic metric search
to reduce the need for manual effort and domain knowledge
in designing metrics. Data augmentation techniques enrich
training datasets by generating additional samples. Recently,
Meng et al. [34] fine-tuned an autoregressive PLM on limited
samples, using it as a generator to create novel training
examples, effectively expanding the dataset and addressing
few-shot learning challenges.

Although existing few-shot learning methods have estab-
lished a systematic theoretical framework and made progress
in pill recognition, they primarily focus on improving the per-
formance of few-shot classes while neglecting the preservation
of initial class performance and adaptability to dynamically
added new classes, leading to a disconnect with real-world
scenarios. In contrast, FSCIPR is more aligned with practical
applications, effectively addressing the dual challenges of
limited samples and dynamic data streams.

C. Class-incremental learning

Class-incremental learning has become an important re-
search direction for scenarios that require dynamically expand-
ing classes. In traditional deep learning, models are usually
trained once on a static dataset; however, in pill recognition
tasks, new pill classes continuously emerge with the devel-
opment and release of new medications, requiring models
to learn new classes to adapt to evolving data continuously.
Class-incremental learning aims to incorporate new classes
while minimizing catastrophic forgetting of previously learned
knowledge [35]–[37]. Representative class-incremental learn-
ing methods include Data Replay (DR), Dynamic Networks,
and KD approaches. DR methods save or generate data from
old classes, enabling joint training with new class data to
prevent forgetting previous knowledge. For example, Jodelet
et al. [38] introduced SDDR, a method that uses a diffusion
model to generate data for previously learned classes, aiding
in preserving past knowledge. Dynamic network approaches
adapt the model’s representational capacity to changing data
streams. For instance, Hu et al. [39] proposed DNE, a method
that better balances accuracy and model complexity. KD
methods preserve old-class knowledge through distillation. For
example, Wen et al. [40] introduced MTD, which identifies
multiple diverse teacher models for effective knowledge re-
tention.

While class-incremental learning research has made sub-
stantial progress, most methods assume ample training data in
incremental scenarios, disregarding the reality of data scarcity
and the high costs of annotation. In dynamic pill recognition
scenarios, new pill classes often emerge unexpectedly, with
limited sample availability. Compared to addressing class-
incremental problems alone, FSCIPR techniques are more
attuned to real-world demands, as they adeptly handle the twin
challenges of data scarcity and dynamic class evolution.
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D. Few-shot Class-incremental Learning

FSCIL is a specialized subset of class-incremental learning
that addresses scenarios with limited sample availability [41].
Its goal is to allow models to incrementally learn new classes
from limited labeled samples while preserving previous knowl-
edge of old classes [41]–[44]. The core challenges in FSCIL
lie in addressing overfitting and catastrophic forgetting, espe-
cially as the scarcity of training data in incremental learning
scenarios exacerbates these issues.

In dynamic domains such as pill recognition, FSCIL ad-
dresses the necessity for models to adapt flexibly to new pill
classes without undergoing extensive retraining on continu-
ously expanding datasets. In tasks such as pill recognition,
where new pill classes are regularly introduced, FSCIL ef-
fectively enables models to incorporate these new classes.
Current FSCIL methods mainly fall into the “Feature Extractor
+ Softmax Classifier” framework and the “Feature Embedding
+ Nearest Mean Classifier” framework. The “Feature Extractor
+ Softmax Classifier” approach typically trains the entire net-
work during incremental learning, often incorporating mecha-
nisms such as DR or KD to mitigate forgetting. For instance,
the CEC algorithm [45] employs a Graph Attention Network
(GAT) to optimize the relations between base and new class
prototypes. This refinement allows the classifier to establish
better decision boundaries in complex category environments.
In contrast, the “Feature Embedding + Nearest Mean Classi-
fier” approach focuses on learning class prototypes in a feature
space, mapping samples into an embedding space where
semantic differences are more apparent, and classifying based
on the nearest mean. The FACT framework [46] introduces
the concept of forward compatibility, enhancing the model’s
capacity to adapt to future new classes.

Although FSCIL methods have achieved notable progress,
there is still room for improvement. In FSCIPR, the challenges
extend beyond overfitting and catastrophic forgetting, as fine-
grained classification also need to be addressed. To tackle
these challenges, we propose a novel framework, WP-FSCIL,
which employs the following strategies: mitigating overfitting
through a parameter-freezing strategy; enhancing the model’s
robustness and discriminative capability in fine-grained classi-
fication tasks by incorporating CT loss and supervised con-
trastive loss; and alleviating catastrophic forgetting with a
multi-dimensional KD strategy based on flexible PFS.

III. METHOD

This section initially outlines the problem setting for FSCIL,
followed by a discussion of the principal challenges associated
with FSCIPR. Subsequently, we present an overview of the
proposed framework WP-FSCIL and offer a detailed exposi-
tion of its components.

A. Problem Setting

FSCIL typically consists of a base session and multiple
incremental sessions. The base session aims to provide suf-
ficient data during the initial training to ensure a good ini-
tialization for the model, while the incremental sessions focus

on learning new classes from limited training samples with-
out forgetting previously acquired knowledge. In FSCIL, the
training and testing datasets can be mathematically represented
as {D0

train, . . . , D
n
train} and {D0

test, . . . , D
n
test}, respectively,

with n indicating the total number of incremental sessions in
the task. D0

train represents the base session training dataset,
containing a substantial amount of labeled data. For each
integer i ranging from 1 to n, Di

train adopts an N -way K-shot
format, indicating that in session i, the training dataset com-
prises N classes, each containing K labeled samples. Di

test

represents the testing dataset for session i. For any integers
i and j between 0 and n where i ̸= j, the corresponding
label spaces of Di

train and Dj
train, denoted as Ci and Cj , are

disjoint, i.e., Ci∩Cj = ∅. When the learning process reaches
session i, only Di

train is accessible, while the complete and
original training datasets from previous sessions are unavail-
able (some methods may store some samples for reply). The
evaluation for session i is performed on a combined set of
testing datasets from session 0 to session i, represented as
D0

test ∪ · · · ∪Di
test.

B. Challenge Analysis

In this section, we summarize the main challenges faced
in FSCIPR, including overfitting due to limited training data,
catastrophic forgetting in the incremental learning process, and
fine-grained classification difficulty among similar pill classes.

1) Overfitting: In FSCIPR, limited training data often leads
the model to focus on minimizing prediction errors within the
training set. This approach is prone to significant discrepancies
between empirical and expected risks, particularly when the
training dataset adopts an N−way K−shot format. As a result,
the model tends to overfit, excelling on training data but under-
performing on test data. Furthermore, as new classes are added
incrementally, continual reliance on this unreliable empirical
risk minimization can hinder the model from reaching an
optimal state, challenging its stability and reliability in the
following sessions.

2) Catastrophic Forgetting: FSCIPR requires a balance be-
tween maintaining stability for previous knowledge and ex-
hibiting plasticity for new classes. When new classes are
introduced, unrestricted adjustment of existing model param-
eters can shift decision boundaries towards these new classes,
leading to catastrophic forgetting. Conversely, placing too
much emphasis on retaining old knowledge can hinder the
model’s ability to acquire new classes effectively.

3) Fine-grained Challenges: In FSCIPR, the subtle visual
differences between many pill classes demand a model with
robust discriminative capabilities. Introducing new classes that
closely resemble existing ones increases classification diffi-
culty and may lead to confusion between previously learned
and newly added classes. Additionally, the scarcity of data for
new classes, combined with their high similarity to known
classes, further intensifies the challenge for the model to
differentiate among them accurately. This problem can be
found in the pill examples in Fig. 1 and Fig. 4.
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C. Overall Framework

To comprehensively address the challenges in FSCIPR, we
propose a framework for pill recognition, termed WP-FSCIL.
Deep neural networks typically require substantial training
data; however, in FSCIPR, only limited samples are available
for incremental sessions. Training the entire network with
such sparse data directly leads to significant overfitting issues.
Furthermore, FSCIPR involves multiple incremental sessions,
demanding that the model preserve prior knowledge while
integrating newly introduced classes. Directly training the
entire network with new data could cause the decision bound-
aries to shift towards the new classes, leading to catastrophic
forgetting. Thus, following most other FSCIL methods, we
freeze most of the backbone parameters after the base session
training to mitigate both overfitting and forgetting.

The WP-FSCIL training process consists of two main
phases, as illustrated in Fig. 2: the base session training phase
and the incremental session training phase. The base session
training phase consists of two stages: Stage 1 represents the
foundational training, designed to ensure the model attains a
robust initialization from sufficient base data; Stage 2 involves
fine-tuning the model to enhance its adaptability for classifica-
tion tasks within the base session; Stage 3 is the incremental
session training phase, focusing on incremental learning which
updates specific parameters to accommodate new classes.

In Stage 1, our primary objective is to endow the back-
bone with strong generalization capabilities to adapt to future
incremental classes and enhance its discriminative ability for
fine-grained pill classes. To achieve this, we employ a forward-
compatible strategy and supervised contrastive learning. The
forward-compatible strategy constructs pseudo-classes based
on existing classes to simulate potential future incremental
classes. It lets the model get the power to adapt to future in-
cremental classes during base session training. Additionally, to
further improve generalization, we introduce a modified super-
vised contrastive loss based on self-supervised contrastive loss,
enhanced by class-supervision information. This approach
enables the model to capture inter-class differences, thereby
supporting effective feature extraction for future incremental
learning. To strengthen the model’s ability to distinguish
fine-grained classes, the CT loss is introduced, merging the
advantages of triplet and center losses to encourage greater
inter-class separation and tighter intra-class clustering, thereby
enhancing the backbone’s discriminative capabilities.

In Stage 2, the model undergoes further fine-tuning with
cross-entropy loss to perform the classification in the base
session. During this stage, a few original features extracted by
the backbone are stored along with the class prototypes (mean
feature vectors for each class) in a memory bank to support
knowledge retention in future sessions. This selective feature
storage strategy significantly reduces storage requirements
compared to conventional raw DR methods.

In Stage 3, the model learns new classes while preserving
old knowledge. To overcome catastrophic forgetting, Stage 3
introduces the multi-dimensional KD strategy, which combines
KD1 to preserve classification abilities and KD2 to maintain
relationships among samples, thereby facilitating the effective

(a) Stage 1: The initial training process of base session.
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Fig. 2: We propose the WP-FSCIL framework for FSCIPR:
In the first stage, virtual classes are synthesized to enable
the model to adapt to future classes in advance. Additionally,
CT loss is introduced to enhance fine-grained discriminative
ability, while supervised contrastive loss improves the model’s
generalization capability. The second stage focuses on fine-
tuning the model, optimizing classification performance in the
base session using cross-entropy loss, and storing relevant
features from the base session. The third stage employs a
multi-dimensional knowledge distillation strategy based on
flexible PFS (combining response knowledge distillation loss
and relational knowledge distillation loss) to acquire new
knowledge while effectively preventing catastrophic forgetting
of old classes.

retention of previous knowledge. However, conventional KD
typically requires sufficient samples, which is incompatible
with the few-shot setting in FSCIPR. Therefore, we synthesize
pseudo features using features and class prototypes stored in
the memory bank to aid in KD. The memory bank is also
updated continuously across the incremental sessions.

D. Base Session Learning

The base session training aims to establish a strong back-
bone with robust generalization and fine-grained discrimina-
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tion by introducing forward-compatible learning, supervised
contrastive loss, and CT loss.

1) Forward-compatible Learning: Since FSCIPR involves
multiple incremental sessions, enough training samples are
available during the base session, but only limited supervised
information is available in the incremental sessions. Therefore,
building a strong generalization capability for the backbone
during the base session training is critical for our method’s
performance in subsequent incremental sessions. One of the
most straightforward strategies is to train the model during the
base session in a way that anticipates potential future scenar-
ios, thus constructing a backbone that is forward-compatible
with future incremental classes.

We observed that pills differ from other natural images,
as their shapes and appearances are typically fixed during
manufacturing. Leveraging this characteristic, we construct
virtual pill classes to simulate potential future incremental
classes. Specifically, we use existing pill class information
to create a series of pseudo-classes through transformations
in size and color. This process is illustrated in Fig. 3.
Using data augmentation techniques (e.g., color transforma-
tion, cropping, rotation, and flipping), we generated virtual
classes and merged them with the original classes to form
a new augmented dataset. The generation process is defined
as (xrv, yrv) = F (x, y), where (x, y) corresponds to a
sample and its label from the original base training data, F is
the applied transformation function, and (xrv, yrv) denotes
a transformed sample-label pair included in the augmented
dataset comprising both real and virtual data. These virtual
classes are combined with existing base classes for backbone
initialization. This approach offers two main advantages: first,
introducing virtual classes enriches the semantic information
available during base session training; second, virtual classes
act as placeholders in the feature space, paving the way for
the integration of future incremental classes. Following the
integration of virtual classes, the classification loss function
for the backbone can be articulated as follows:

Lcls (ϕ;xrv, yrv) = Lce (ϕ (xrv) , yrv) , (1)

where ϕ represents the trained model, and Lce denotes the
cross-entropy loss.

2) Supervised MoCo-based Contrast Learning: In addition
to equipping the backbone with forward compatibility to
address potential future scenarios, we are also dedicated to
enhancing the model’s generalization capability and ability to
discriminate fine-grained pill classes. In recent years, many
foundational model techniques in computer vision have gained
attention due to their outstanding performance across various
tasks. Among them, self-supervised contrastive learning tech-
niques, exemplified by MoCo, leverage dynamic dictionaries
to autonomously extract information from images without re-
quiring labeled data and have proven effective in foundational
model training. We introduce a supervised contrastive loss
function built upon MoCo to enhance model performance
further. Compared to self-supervised contrastive loss, super-
vised contrastive loss incorporates class supervision, bringing
feature representations of the same class closer together while
pushing those of different classes further apart. This enables

Color 
Transformation

 Cropping

Rotation

Flipping

Random augmentation 
operations

Original dataset 
with N classes

Augmented dataset with 
2*N classes (virtual +original)

Fig. 3: Virtual class generation process. The process of gener-
ating virtual classes through random augmentation operations,
such as color transformation, cropping, rotation, and flipping.
The original dataset with M classes is expanded to form an
augmented dataset with 2M classes, combining virtual and
original classes.

the model to capture inter-class differences better and extract
more discriminative and efficient features, thereby supporting
FSCIPR tasks.

Specifically, for a batch of image-label pairs {(xi, yi)}bi=0,
random augmentations are applied to each image, resulting in
the creation of a query view xq = Augq (x) and a key view
xk = Augk (x). These augmented views are then transformed
into L2-normalized representations q and k through ζ (·),
where ζ = h ◦ g represents a composition of the full image
encoder g and the projector h. The supervised MoCo-based
contrastive loss Lsup is calculated using these representations
to optimize the model’s feature discrimination capabilities,
formulated as:

Lsup(ζ;xi, yi, T ) = − 1

|k+|
∑

k+∈k+

log
exp(qTi k+/T )∑
k∈k exp(q

T
i k/T )

, (2)

where k is the set of all the key representations, k+ indicates
the positive set, meaning the elements in k that belong to the
same class as xi, and the T is a temperature parameter. After
the introduction of the supervised contrastive loss, the joint
training loss can be formulated as follows:

Ltotal = Lce + αLsup, (3)

where Lce is the cross-entropy loss, Lsup represents the
supervised contrast loss, and α is a hyper-parameter that
weights the importance of Lsup.

3) Center-Triplet Loss: Although we have previously intro-
duced virtual class-based forward compatibility strategies and
supervised contrastive loss to improve the model’s forward
compatibility, generalization, and, to some extent, discrimi-
native capability, there remains a need to enhance its dis-
criminative power further when dealing with fine-grained pill
classes and high inter-class similarity. Fine-grained classes are
characterized by minimal differences between classes and sig-
nificant variations within the same class, posing a significant
challenge to the model’s feature extraction and classification
capabilities. To address this issue, we employ the CT loss [13]
to enhance intra-class compactness and inter-class separation.
This ensures that samples belonging to the same class are
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more tightly grouped within the feature space, and samples
from different classes are pushed further apart, improving the
model’s discriminative capability and classification accuracy.

The CT loss combines the advantages of Center loss [47]
and Triplet loss [48]. It anchors a class by minimizing the dis-
tance between its samples and the class center while ensuring
it is smaller than the distance to the nearest different class
center. The core objective of CT loss is to enhance intra-class
compactness and inter-class separability by optimizing the
feature representations, thereby improving the model’s overall
performance in distinguishing between classes. The CT loss
is mathematically expressed as:

Lct (ϕ;x) = max(0,m+ ∥ϕ (x)− cy∥ −min
j ̸=y

∥cy − cj∥),
(4)

where the triplet (x, cy, cj) includes a sample x, its class center
cy , and the nearest different class center cj . The loss updates
the backbone to ensure the distance between the sample’s
feature and its center cy is less than the distance to cy by
a margin m. After the introduction of the CT loss, the joint
training loss can be formulated as follows:

Ltotal = Lce + αLsup + βLct, (5)

where λ balances the CT and classification losses.

E. Incremental Session Learning

In incremental session learning, the core goal is to ensure
that the model can retain previously learned knowledge while
learning new classes, avoiding catastrophic forgetting. How-
ever, conventional KD methods often rely on large amounts of
samples to maintain the stability of old knowledge. However,
the issue of limited samples in incremental sessions of FSCIPR
makes conventional KD difficult. To address this, we propose a
PFS strategy, which generates pseudo-features of old classes
to mitigate the impact of sample scarcity, thereby reducing
storage costs and facilitating the transfer of old knowledge.
We introduce a multi-dimensional KD approach based on this
synthesis strategy, including response-based and relation-based
distillation (KD1 and KD2). These methods comprehensively
leverage the relationships between old and new classes, pre-
serving the stability of old knowledge while strengthening
the model’s capability to acquire new classes. This enables a
smooth transition in the incremental learning process, prevents
catastrophic forgetting, and maintains model performance.

1) Pseudo Feature Synthesis: In incremental learning, DR
and KD are commonly employed to maintain the stability
of previously learned knowledge. However, these methods
typically require additional memory to store samples from
prior learning sessions, leading to increasing storage demands
as new knowledge is introduced. FSCIPR faces more complex
challenges than other incremental learning tasks, particularly
due to the limited sample availability during incremental
sessions, making traditional DR and KD methods difficult to
apply directly. Additionally, storing data can pose potential
privacy risks for patients. To tackle these challenges, a strategy
integrating PFS is introduced, allowing the flexible genera-
tion of reliable features without storing extensive datasets,

thereby reducing storage requirements and addressing privacy
concerns.

Our approach maintains a frozen feature extractor during
incremental sessions while training only the fully connected
layers to adapt to new classes. This allows us to utilize the
features extracted by the frozen feature extractor for DR and
KD, avoiding storing raw image data, significantly reducing
storage requirements, and minimizing privacy concerns. How-
ever, due to the few-shot samples, relying solely on these
features may be insufficient for a comprehensive knowledge
review. Therefore, we introduce a strategy combining existing
feature vectors with model predictions to synthesize and select
reliable pseudo-features, effectively overcoming the limitations
of the few-shot setting. This strategy supports the transfer of
old knowledge during the DR and KD processes, ensuring the
stability of previously learned knowledge while strengthening
the model’s ability to acquire incremental classes.

Our PFS method is detailed in Alg. 1, which operates
during session i. It takes the training dataset, trained model,
and specified numbers of stored and synthesized features
per class as input. The algorithm extracts and computes the
mean features for each class, randomly selects and stores
some features, and then synthesizes pseudo-features using a
combination of randomly generated scalars and stored features.
By leveraging model predictions, reliable pseudo-features are
selected to form the synthesized pseudo-feature set, effectively
utilizing existing class features and overcoming the limitations
of knowledge review under few-shot conditions.

2) Data Replay and Multi-dimensional Knowledge Distillation:
After generating reliable pseudo-features, our framework en-
sures a balanced integration of new and old knowledge through
DR and Multi-dimensional KD. The flexibility in adjusting the
number of synthesized pseudo-features allows it to meet the
requirements of both DR and KD. Specifically, during session
t, we first perform DR using pseudo-features representing
old classes. This ensures that the fully connected layers of
the model learn both the new class features and the pseudo-
features of the old classes, thus achieving an equilibrium
between integrating new knowledge and retaining previously
learned information. The mathematical representation is as
follows:

Ltotal (ψt; frv, yrv) = Lce (ψt (frv) , yrv) , (6)

where ψt denotes the fully connected layers, frv represents the
feature from the union of features derived from the ongoing
session and the synthesized pseudo-features of earlier sessions,
and yrv is the corresponding label.

In addition to DR, our framework introduces multi-
dimensional KD to facilitate knowledge transfer from the old
model to the new one. The distillation process consists of two
main components: KD1, which utilizes the Kullback-Leibler
divergence to measure differences in probability distributions,
and KD2, which incorporates both Euclidean distance and co-
sine similarity to capture relational information. The Kullback-
Leibler divergence evaluates the variation across the softened
probability outputs produced by the teacher model and the
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Algorithm 1: PFS for session i

Input : Training dataset Di
train, trained model ϕi

(with feature extractor φi and fully connected
layers ψi), number of features P to be stored
per class, number of pseudo-features Q to
synthesize per class.

Output: Set of synthesized pseudo-features S.
Initialize an empty set S for storing pseudo-features.;
for each class c ∈ Di

train do
Extract features {fci}

Nc
i=1 for all Nc samples in

class c using φi.;
Compute mean feature µc =

1
Nc

∑Nc

i=1 fci .;
Store P randomly selected features and mean
feature µc in a memory bank Mc.;

end
for each class c ∈ Di

train do
Set countc = 0;
while countc < Q do

Select a random feature vector f from Mc;
Generate a random scalar α ∈ (0, 1);
Synthesize pseudo-feature
fv = αf + (1− α)µc;

Predict class label of fv using ψi(fv);
if ψi(fv) predicts class c then

Append fv to S;
Increment countc by 1;

end
end

end

student model, mathematically expressed as:

Lkd1 (ψt, ψt−1; frv) = KL

(
ψ (frv)

T
,
ψt−1 (frv)

T

)
, (7)

where T denotes the temperature parameter.
To further preserve consistency in the relationships between

samples, we introduce KD2, which enhances the transfer of old
knowledge by aligning both the pairwise distance and angular
relationships between samples in the feature space of the new
and old models. This distillation approach consists of two main
components. First, the distance relationship loss ensures that
the pairwise distances between samples in the new and old
models are aligned. This loss is expressed as:

Ldist (φt, φt−1; frv) =
1

N

∑
i,j

∣∣∣∣∣dist
(
φt−1(frvi), φt−1(frvj )

)
dist(φt−1)

−
dist

(
φt(frvi), φt(frvj )

)
dist(φt)

∣∣∣∣∣,
(8)

where dist(·, ·) denotes the Euclidean distance between fea-
tures, and dist(φ) represents the normalized mean distance
for the features of the respective model.

In addition, the angular relationship loss ensures consistency
of angular relationships between feature vectors in the student

and teacher models. This is formulated as:

Langle (φt, φt−1; frv) =
1

N

∑
i,j

∣∣∣∣∣cos
(
vt(frvi , frvj )

)
−cos

(
vt−1(frvi , frvj )

) ∣∣∣∣∣,
(9)

where vt(frvi , frvj ) and vt−1(frvi , frvj ) denote the normal-
ized pairwise feature differences between samples in the new
and old models, respectively, and cos(·) represents cosine
similarity.

The total KD2 loss is defined as a weighted combination of
the two components:

Lkd2 = λ · Ldistance + (1− λ) · Langle, (10)

where λdistance and λangle are weighting factors for the dis-
tance and angular relationship losses, respectively. This KD2
approach effectively preserves the consistency of feature re-
lationships between the student and teacher models, thereby
facilitating the smooth transfer of knowledge and maintaining
stability during incremental learning sessions.

The joint training loss in incremental sessions combines
classification loss, KD1 and KD2, formulated as:

Ltotal = Lce + δLkd1 + εLkd2, (11)

where δ and ε balance the KD1 loss and KD2 loss.

IV. EXPERIMENTS

A. Dataset and Evaluation Metric

FCPill: The FCPill dataset was introduced to evaluate pill
recognition within the FSCIL setting [13]. It comprises 100
classes, each with 600 high-resolution images, offering a
robust base for experiments in few-shot learning and class-
incremental learning. To follow the FSCIL setup, the dataset
is organized with 60 classes forming the base session. Addi-
tionally, 40 classes are distributed across eight incremental
sessions, with each session introducing 5 classes. In each
incremental session, the training dataset follows the 5-way 5-
shot format, where 5 samples per class are randomly selected
for training. Fig. 4 illustrates representative images from
FCPill, showcasing pills’ varied appearances and packaging
across different classes.

mCURE: In addition to the FCPill dataset, we evalu-
ated our method using another publicly available pill image
dataset, CURE [20]. Originally designed for few-shot learning
tasks, the CURE dataset comprises 1,873 images distributed
across 196 classes, each containing approximately 45 samples.
Following the setup established by Zhang et al. [13], we
adapted it to evaluate pill recognition within the FSCIL
setting. Specifically, we used a subset of CURE, referred to as
mCURE, which consists of 171 classes for experimentation.
The mCURE dataset comprised 91 base classes and 80 incre-
mental classes. The incremental classes were further divided
across eight incremental sessions, with each session’s training
data organized in a 10-way 5-shot format. Fig. 5 presents
representative examples.



ZHANG et al.: WP-FSCIL FOR PILL RECOGNITION 9

Class 10 Class 55Class 24Class 1

Class 80 Class 99Class 88Class 72

Fig. 4: Examples in the FCPill dataset. It can be found that all
pills are structured, with most being capsules or round tablets.
However, unlike other image datasets, the pills in this dataset
present fine-grained challenges, as categories 72, 88, and 99
show high similarity, adding extra difficulty to FSCIPR.

Class 1 Class 9Class 5Class 0

Class 67 Class 130Class 120Class 32

Fig. 5: Examples in the mCURE dataset. Similar to FCPill,
the pills are structured in shape, but there is a high degree of
similarity between different categories, such as categories 0,
1, and 120. These fine-grained challenges further increase the
difficulty of FSCIPR.

Evaluation Metric: To comprehensively evaluate our
framework, we utilized three metrics: 1) Accuracy for each
session; 2) Performance Drop (PD), which measures the
absolute decline in accuracy from the first session to the last,
calculated as PD = A0 − AN , where A0 represents the
classification accuracy in the base session, and AN represents
the accuracy in the final session [41]; and 3) The Average
Accuracy (AA) across all sessions. Higher values indicate
better performance for both accuracy and AA, whereas a lower
value is preferable for PD.

B. Implementation Details

In most FSCIL research, ResNet18 serves as the standard
backbone network, and we adopted it for the pill datasets
in our study as well. An additional fully connected layer is
attached to the network’s output. The training process uses
the SGD optimizer with a learning rate of 0.1, momentum
set to 0.9, and a weight decay of 0.0005. Upon completing
the base session training, all parameters, except those in the
fully connected layers, are frozen; only these layers are trained

during the incremental sessions. Classification leverages the
softmax function. Our implementation utilizes PyTorch 2.1 and
Python 3.9, with training on an Nvidia Tesla V100 GPU.

C. Comparison with State of The Arts

Our research evaluates the proposed method against several
advanced approaches using the FCPill and mCURE datasets.
The evaluated methods include CEC [45], LIMIT [49],
FACT [46], ALICE [50], SSFE-Net [51], BiDistFSCIL [52],
and SAVC [53], chosen for their strong performance and
relevance to FSCIL. Comprehensive results for FCPill and
mCURE are presented in Fig. 6, Tab. I and Tab. II, providing
a thorough comparison of our approach with these methods
across different sessions, thereby highlighting the strengths
and effectiveness of our framework.
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Fig. 6: Comparison with SOTA methods on FCPill and
mCURE. Our method, WP-FSCIL, comprehensively surpasses
other methods.

We compare WP-FSCIL with several advanced methods
on the FCPill dataset, and the results are provided in Fig.6
and Tab.I, highlighting WP-FSCIL’s remarkable advantages in
various dimensions. From the perspective of individual session
performance, WP-FSCIL establishes a robust baseline with
an impressive accuracy of 96.6% in the initial session. It
maintains high stability throughout the incremental sessions,
with accuracies of 91.35% in Session 4 and 90.40% in Session
8. This consistent performance across sessions underscores its
ability to handle incremental learning scenarios effectively. In
contrast, other methods, such as SAVC and FACT, exhibit
more pronounced declines. For instance, SAVC’s accuracy
drops from 94.62% in Session 0 to 82.50% in Session 8,
and FACT decreases from 96.22% to 84.73%. Regarding AA,
WP-FSCIL achieves 92.51%, outperforming all competing
methods, including SSFE-Net (89.94%) and CEC (90.01%).
This highlights WP-FSCIL’s superior capacity for balancing
learning new and old classes. Furthermore, regarding PD,
WP-FSCIL achieves a competitive value of 6.20%, slightly
higher than CEC’s 5.59% but substantially lower than FACT’s
11.49% and SAVC’s 12.12%. It is important to note that while
PD provides a straightforward measure of accuracy decline
from the first to the last session, it does not fully capture the
resistance to forgetting across all sessions. Therefore, WP-
FSCIL’s exceptional AA further validates its robustness and
effectiveness. Overall, WP-FSCIL demonstrates unparalleled
performance in individual session accuracy, average accuracy,
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TABLE I: Comparison results of our WP-FSCIL against other SOTA methods on FCPill. (In %).

Dataset Method Venue
Accuracy in each session

AA↑ PD↓
0 1 2 3 4 5 6 7 8

FCPill

CEC [45] CVPR 21 93.71 91.63 90.08 90.22 89.10 88.67 89.22 89.34 88.11 90.01 5.59
LIMIT [49] TPAMI 22 93.11 90.07 88.65 88.54 87.18 86.68 87.33 87.39 86.01 88.33 7.10
FACT [46] CVPR 22 96.22 92.84 89.98 89.31 87.80 86.72 87.09 86.67 84.73 89.04 11.49

ALICE [50] ECCV 22 89.20 85.84 83.40 81.46 78.73 77.48 76.76 76.13 74.91 80.43 14.29
SSFE-Net [51] WACV 23 94.49 93.26 90.61 90.53 88.63 87.72 88.40 88.54 87.29 89.94 7.20

BiDistFSCIL [52] CVPR 23 94.71 91.74 89.61 88.54 87.73 87.36 87.90 87.62 86.00 89.02 8.71
SAVC [53] CVPR 23 94.62 92.57 90.02 89.28 87.20 85.95 85.04 84.14 82.50 87.92 12.12
WP-FSCIL - 96.60 94.72 92.44 92.65 91.35 91.31 91.58 91.55 90.40 92.51 6.20

and stability, confirming its significant advantage in the chal-
lenging FSCIPR task. This consistent superiority across key
metrics establishes WP-FSCIL as a reliable FSCIL framework.

Fig. 6 and Tab. II compare WP-FSCIL with other advanced
methods on the mCURE dataset, highlighting WP-FSCIL’s
significant advantages from multiple perspectives. First, in the
base session, WP-FSCIL achieves a classification accuracy
of 92.82%, which is slightly lower than that of SSFE-Net,
potentially due to SSFE-Net leveraging a deeper ResNet-
50 for training assistance [51]. In the incremental sessions,
WP-FSCIL exhibits relatively small performance declines.
For instance, it maintains accuracies of 84.01% and 78.35%
in Session 4 and Session 8, respectively, showcasing high
stability. In contrast, other methods exhibit more substantial
performance drops; for example, SAVC’s accuracy decreases
from 89.63% in Session 0 to 67.14% in Session 8, and SSFE-
Net drops from 93.41% to 72.71%. In terms of AA, WP-
FSCIL achieves 85.12%, significantly surpassing SSFE-Net
(82.03%) and SAVC (76.59%), thereby confirming its superior
overall capability to learn new and old classes simultaneously.
WP-FSCIL’s performance PD of 14.47% is slightly higher than
ALICE’s 13.88%. Overall, WP-FSCIL demonstrates outstand-
ing performance in single-session accuracy, average accuracy,
and stability, establishing its superiority in FSCIPR tasks.

D. Ablation Study
Ablation studies were conducted to validate the significance

of the proposed components, with a focus on the key aspects of
our method. These components include virtual class generation
(VCG), CT loss and supervised contrastive learning (Loss),
PFS, KD1, and KD2. The results for FCPill and mCURE are
presented in Tab. III and Tab. IV, demonstrating the impact of
each component on overall performance.

Tab. III showcases the ablation study results on the FCPill
dataset, highlighting the impact of each module on overall
performance through the evaluation of different component
combinations. The results clearly illustrate the importance of
each component. Using only the baseline model (without any
additional components), the accuracy in the initial session
(Session 0) is 95.02%, but it drops significantly to 51.38%
in Session 8, with an AA of only 70.41% and a PD of
43.64%, indicating the baseline model’s insufficient ability
to maintain performance in incremental learning. Introducing

virtual class generation (VCG) significantly enhances forward
compatibility, improving AA to 76.48% and reducing PD
to 32.99%. This improvement is reflected in the incremen-
tal sessions, where accuracy rises to 63.22% in Session 8,
demonstrating how VCG helps the model adapt to new classes.
Adding the joint loss (CT loss and supervised contrastive
learning) on top of VCG further improves performance. The
model achieves an AA of 77.57%, with accuracy in Session 8
increasing to 61.20%. This demonstrates the effectiveness of
the joint loss in enhancing fine-grained feature discrimination
and generalization ability. However, PD slightly increases to
35.40%, indicating room for improvement in cross-session
stability. Incorporating PFS results in significant performance
gains. AA improves to 92.41%, and PD dramatically decreases
to 6.55%. This improvement demonstrates that PFS signif-
icantly stabilizes performance across sessions, as evidenced
by the Session 8 accuracy rising to 90.05%. Adding KD1
on top of PFS maintains the AA at 92.41%, while further
reducing PD to 6.33%, validating KD1’s effectiveness in mit-
igating forgetting through distillation. Finally, incorporating
KD2 achieves optimal overall performance, increasing AA to
92.51% and reducing PD to 6.20%. KD2 further stabilizes
model performance by preserving the consistency of sample
relationships in the feature space, as reflected in the high
accuracy across all sessions, such as 91.35% in Session 4 and
90.40% in Session 8.

Tab. IV presents the ablation study results conducted on
the mCURE dataset, illustrating the contributions of various
components in our WP-FSCIL framework. The basic model,
without incorporating any additional components, achieves an
initial session accuracy of 84.84%, which drops sharply to
39.15% by Session 8. This results in a low AA of 56.81%
and a high PD of 45.69%, highlighting severe forgetting
across incremental sessions. Introducing virtual class gener-
ation (VCG) improves AA to 57.08% but results in a higher
PD of 49.53%, indicating its role in forward compatibility
yet has a limited effect on forgetting mitigation. Adding the
combined CT loss and supervised contrastive learning (Loss)
significantly enhances the AA to 66.28% while reducing the
PD to 44.09%, showcasing its effectiveness in fine-grained
feature learning and generalization. The inclusion of PFS
results in a remarkable improvement, achieving an AA of
85.20% and substantially lowering the PD to 15.29%. Adding
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TABLE II: Comparison results of our WP-FSCIL against other SOTA methods on mCURE. (In %).

Dataset Method Venue
Accuracy in each session

AA↑ PD↓
0 1 2 3 4 5 6 7 8

mCURE

CEC [45] CVPR 21 82.26 79.52 73.65 70.92 67.52 66.35 62.36 59.24 58.40 68.91 23.86
LIMIT [49] TPAMI 22 82.26 79.33 74.35 71.40 68.44 66.79 62.87 59.42 58.31 69.24 23.95
FACT [46] CVPR 22 84.00 78.24 73.39 71.20 68.67 64.90 62.68 58.39 57.31 68.75 26.69

ALICE [50] ECCV 22 51.10 49.21 46.04 44.71 42.21 40.46 39.74 38.23 37.22 43.21 13.88
SSFE-Net [51] WACV 23 93.41 90.22 86.24 85.46 80.48 80.27 76.53 72.95 72.71 82.03 20.70

BiDistFSCIL [52] CVPR 23 67.36 63.66 58.69 54.71 51.22 48.19 46.23 42.70 42.22 52.78 25.14
SAVC [53] CVPR 23 89.63 85.57 81.04 79.28 75.04 72.72 71.26 67.64 67.14 76.59 22.49
WP-FSCIL - 92.82 91.26 87.95 87.33 84.01 83.90 80.63 79.83 78.35 85.12 14.47

TABLE III: Ablation study on FCPill. For short, VCG indicates virtual class generation; Loss stands for the combination of
our proposed CT loss and supervised contrastive learning. (In %)

VCG Loss PFS KD1 KD2
Accuracy in each session

AA↑ PD↓
0 1 2 3 4 5 6 7 8

95.02 86.50 79.59 74.24 69.39 65.25 58.16 54.19 51.38 70.41 43.64
✓ 96.21 89.35 81.40 77.97 74.63 71.45 68.11 65.98 63.22 76.48 32.99
✓ ✓ 96.60 91.43 84.90 81.99 76.86 71.29 69.24 64.65 61.20 77.57 35.40
✓ ✓ ✓ 96.60 95.13 92.71 92.80 91.23 90.83 91.17 91.19 90.05 92.41 6.55
✓ ✓ ✓ ✓ 96.60 94.73 92.40 92.58 91.18 91.09 91.43 91.46 90.27 92.41 6.33
✓ ✓ ✓ ✓ ✓ 96.60 94.72 92.44 92.65 91.35 91.31 91.58 91.55 90.40 92.51 6.20

TABLE IV: Ablation study on mCURE. The abbreviation is consistent with Table III. (In %)

VCG Loss PFS KD1 KD2
Accuracy in each session

AA↑ PD↓
0 1 2 3 4 5 6 7 8

84.84 74.41 64.24 60.28 53.76 48.03 45.41 41.20 39.15 56.81 45.69
✓ 89.63 73.98 63.24 58.52 52.59 48.03 45.54 42.10 40.10 57.08 49.53
✓ ✓ 92.82 82.72 72.03 68.90 63.65 61.18 55.98 50.51 48.73 66.28 44.09
✓ ✓ ✓ 92.82 91.79 89.01 87.40 84.53 83.93 80.49 79.26 77.53 85.20 15.29
✓ ✓ ✓ ✓ 92.82 91.21 88.08 87.42 84.05 83.66 80.52 79.26 77.90 84.99 14.92
✓ ✓ ✓ ✓ ✓ 92.82 91.26 87.95 87.33 84.01 83.90 80.63 79.83 78.35 85.12 14.47

KD1 maintains a similar AA of 84.99% and slightly lowers
the PD to 14.92%, validating KD1’s contribution to retaining
old knowledge. Finally, the addition of KD2 further optimizes
the framework’s performance, achieving the highest AA of
85.12% and reducing PD to 14.47%. This demonstrates KD2’s
critical role in preserving sample relationships and mitigating
forgetting. Overall, these components work synergistically,
enabling our WP-FSCIL to excel in the FSCIPR task.

E. Impact of Hyper-parameter

A comprehensive analysis was performed to examine how
various hyper-parameters influence the performance of the
proposed WP-FSCIL framework on the FCPill and mCURE
datasets, as depicted in Fig. 7 and Fig. 8. Due to the unique
characteristics of each dataset, specific hyper-parameter tuning
is required for each dataset.

For the FCPill dataset, the influence of α from Eq. 5 is
shown in Fig. 7(a). When α is set to 0.04, the method reaches
its peak performance across all sessions. Regarding the CT
loss, the analysis focuses on β from Eq. 5 and the margin m
from Eq. 4. As illustrated in Fig. 8(a), the peak performance
in the final session is achieved when β is 0.06 and m is 4.
For PFS, the key hyper-parameters include P (the number of
real features stored per class) and Q (the number of pseudo-
features synthesized per class) from Alg. 1. Fig. 8(b) illustrates
that the optimal performance in the final session is achieved
with P = 5 and Q = 8. It is worth noting that while P = 5
might give the impression of complete replay, the stored data
are not the raw image data. Furthermore, our method can
achieve comparable performance with other values of P ; the
parameter tuning here is solely aimed at achieving optimal
performance. For KD1, the primary hyper-parameters are the
temperature parameter T and the weighting coefficient δ in
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the overall loss function (Eq. 11). As depicted in Fig. 8(c),
the optimal performance on the FCPill dataset is observed
when δ = 0.8 and T = 3. We also observed that KD1
sensitivity on the FCPill dataset is lower than on mCURE.
This can be attributed to two factors: first, as the tempera-
ture increases, the teacher model already provides sufficient
soft information, and further increases do not enhance the
effective information conveyed; second, the characteristics or
distribution of the FCPill dataset make class distinctions less
dependent on temperature adjustments, reducing the impact of
temperature and, consequently, the sensitivity during the KD1
process. For KD2, the analysis focuses on the ratio of distance
relationships and cosine relationships (λ in Eq. 10) and the
weighting coefficient ε in Eq. 11. As illustrated in Fig. 8(d),
setting ε = 1.0 and λ = 0.1 yields the highest performance in
the final session.

Overall, on the FCPill dataset, the best performance is
achieved with the hyper-parameters {α, β,m, P,Q, δ, T, ε, λ}
= {0.04, 0.06, 4, 5, 8, 0.8, 3, 1.0, 0.1}. Similarly, for the
mCURE dataset, the best performance is observed
with the hyper-parameters {α, β,m, P,Q, δ, T, ε, λ} =
{0.04, 0.1, 2, 3, 11, 0.7, 5, 0.5, 0.3}.

V. CONCLUSION

To conclude, our paper introduces WP-FSCIL, a novel
framework specifically developed to tackle the key challenges
of the FSCIPR task, including overfitting, fine-grained clas-
sification issues, and catastrophic forgetting. To mitigate the
overfitting risk associated with the limited samples in in-
cremental sessions, WP-FSCIL employs a parameter-freezing
strategy after base session training, allowing only the fully
connected layers to be updated. This approach preserves
the model’s generalization capabilities, effectively preventing
overfitting caused by the few-shot setting. For fine-grained
classification, the framework integrates CT loss and supervised
contrastive learning during the base session to enable the
backbone network to learn robust and discriminative feature
representations. To address catastrophic forgetting, WP-FSCIL
incorporates multiple innovative strategies. During the base
session, virtual class generation is introduced, equipping the
model with forward compatibility to anticipate and adapt to
future incremental learning scenarios in advance. In incre-
mental sessions, a multi-dimensional KD strategy based on
flexible PFS is employed. This strategy can synthesize any
number of pseudo-features for old classes, addressing the
limitations of KD caused by insufficient samples. Furthermore,
the framework utilizes both KD1 and KD2 to comprehensively
retain knowledge of previously learned classes, enhancing
resistance to forgetting. Extensive experiments on two publicly
available pill datasets were performed to assess the perfor-
mance of WP-FSCIL. In comparison with advanced FSCIL
methods, WP-FSCIL achieved superior results, demonstrating
its effectiveness and robustness. Additionally, comprehensive
ablation studies validated the contributions of each compo-
nent within the framework, while a detailed hyperparameter
analysis provided insights into the impact of key parameters
on performance and identified optimal configurations. These

findings collectively highlight the significant potential of WP-
FSCIL as a robust solution for FSCIPR tasks.

Despite the significant advantages demonstrated by WP-
FSCIL in FSCIPR tasks, there are still several limitations
that warrant further investigation. First, the current FSCIL
setting typically relies on the N-Way K-Shot assumption,
which is overly idealized and may not fully align with real-
world applications. Future research should focus on exploring
more realistic settings, such as managing imbalanced data or
dynamic variations in sample numbers encountered in real-
world scenarios. Second, the current study focuses primarily
on single-object classification tasks, while pill targets in real-
world applications often appear in multi-object, multi-class
contexts. Therefore, future work could further investigate
methods for incremental learning in multi-object, multi-class
scenarios, enhancing the system’s applicability in complex
environments. Lastly, with the growing adoption of smart
devices, multi-terminal collaboration has become a critical
trend. Future research could explore developing few-shot
class-incremental pill recognition systems within a federated
learning framework, enabling effective data privacy protection
while improving the model’s generalization and robustness
across multiple devices. These directions not only broaden the
applicability of WP-FSCIL but also provide new insights and
challenges for research in the FSCIPR field.
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Fig. 7: The influence of the weight of supervised contrastive loss on the performance of our method across sessions on the
FCPill and mCURE datasets. It can be observed that for both the FCPill and mCURE datasets, the best performance is achieved
when the weight is set to 0.04.
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Fig. 8: The influence of hyper-parameters of each component on the performance of our method in the final session on the FCPill
and mCURE datasets. It can be observed that on the FCPill dataset, the best performance is achieved with hyper-parameters
{β,m, P,Q, δ, T, ε, λ} = {0.06, 4, 5, 8, 0.8, 3, 1.0, 0.1}. On the mCURE dataset, the optimal performance is obtained with
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